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Notes on theory errors for the one-jet inclusive cross section
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We discuss the correlated systematic errors that may be ascribed to the next-to-leading order
QCD theory used to predict the one-jet inclusive cross section in hadron collisions.
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I. INTRODUCTION

Predictions of the Standard Model are typically
made with the aid of next-to-leading order (NLO)
perturbative calculations (or sometimes with NNLO
calculations). Evidently, these predictions are not
exactly equal to what one should measure if the
Standard Model is correct. If we have an NLO calcu-
lation, we leave out NNLO and N3LO contributions,
etc. We also leave out contributions that are sup-
pressed by a power of the large momentum scale of
the problem. Of course, we do not know exactly
how big these contributions are: if we could calcu-
late them, we would include them in the prediction.
Nevertheless, we can estimate the size of the correc-
tions. They then constitute a “theory error” in the
prediction, which is quite similar to an experimental
systematic error in the measurement.

∗Electronic address: olness@smu.edu
†Electronic address: soper@uoregon.edu

In this paper we distinguish between errors as-
sociated with higher order contributions and power
suppressed contributions to the cross section, which
we call theory errors, and errors associated with our
imperfect knowledge of the parton distribution func-
tions needed for the prediction.

Estimated theory errors are needed in two con-
texts. First, if an experiment does not agree with
the theoretical prediction within the experimental
statistical and systematic errors, then we need to
see if there is agreement within the combined exper-
imental and theory errors and the errors from the
parton distributions used in the prediction. In the
case that the disagreement is outside of the com-
bined errors, then we have a signal for new physics.

The second context in which we need estimated
theory errors is in the determination of parton distri-
bution functions from experimental measurements.
The theory errors give a contribution to the errors
that we associate with the parton distribution func-
tions that emerge from a fit to the data. Evidently,
if we do not include theory errors, the resulting er-
rors in the parton distribution functions will be too
small. Additionally, if for one kind of process the
theory error is large while for another kind of pro-
cess the theory error is small, then we will give the
large-error process too much weight in the fit.

In this paper, we provide an estimate of the theory
error for the one jet inclusive cross section dσ/dET ,
where ET is the transverse momentum or “trans-
verse energy” of the jet, in hadron-hadron collisions.
There is good data for this process from the CDF
and D0 experiments at Fermilab, including careful
estimates of the experimental systematic errors. Es-
timates of the theory error are needed to accompany
the estimates of the experimental systematic errors.

We warn that there is no unique method to es-
timate theory errors. Thus our task is to provide
a method that is defensible if not necessarily opti-
mal. We seek to provide an estimate in a form that
includes the correlations from one ET to another.
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II. GENERAL SETUP

We use next-to-leading order (NLO) QCD theory
to make predictions for the one-jet inclusive cross
section1

dσ

dET
=

1
2(ymax − ymin)

×

×
[∫ −ymin

−ymax

dy +
∫ ymax

ymin

dy

]
dσ

dET dy
. (1)

In the calculation, one uses Monte Carlo integra-
tion. Then there is a random statistical error for
each point ET,i. We do not include these statistical
errors in the analysis here since they are typically
quite small (say 2%) and one can reduce them by
running the program for a longer time. If we wished
to include the errors from fluctuations in the Monte
Carlo integrations, that task would be straightfor-
ward because the statistical nature of these fluctua-
tions is known.

The treatment of theory errors beyond the errors
from fluctuations in the Monte Carlo integrations
is more subtle. These are similar to the correlated
systematic errors in the experimental results. We
formulate a treatment the theory errors as follows.
We let

dσ

dET
=

[
dσ

dET

]
NLO

{
1 +

∑
i

λifi(ET )

}
. (2)

Here the functions fi(ET ) are definite functions,
while the λi are unknown parameters. Thus
λifi(ET ) represents an unknown theoretical contri-
bution that might modify the NLO theory. We treat
the λi as Gaussian random variables with variance
1. That is, the size of the uncertainty with label i
is represented by how big fi(ET ) is. Note that the
uncertainty is a function of ET that is expressed in
terms of uncertain parameters, the λi. If we were to
believe that the uncertainty is of order, say, 10% but
we have no idea of what the shape of the true cross
section is within a 10% band about the NLO predic-
tion, then we would choose many functions fi(ET ),
each of size 0.1, but with each being non-zero only
in a very tiny range of ET . Such a view seems to
us unreasonable. Experience with various pertur-
bative and non-perturbative contributions teaches
that they are smooth functions of the relevant vari-
ables, ET in this case. On the other hand, experience
also teaches that new effects have some dependence
on the variables at hand. For instance, some non-
perturbative contributions may be much larger (as

1 Specifically, we use the program of [1], although there are
other programs that can give the same results.
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Figure 1: The largest eigenvalue λmax of the matrix M
plotted versus ET in GeV. This represents approximately
a 2λmax = 14% uncertainty at ET = 50 GeV and an
2λmax = 23% uncertainty at ET = 600 GeV. The shaded
(red) band is a straight line fit.

Figure 2: The net error as given by Eq. (6). Also shown,
as dashed lines, are the individual functions fi(ET ).

a fraction of the NLO cross section) at low ET than
at high ET . Some perturbative contributions be-
yond NLO may be larger at high ET than at low
ET . Thus we seek a few functions fi(ET ) that have
some dependence on ET and represent, as best we
can determine, our understanding of the character
of uncalculated contributions.

In the following sections, we analyze several
sources of theory errors and associate them with
functions fi(ET ).

III. ERROR ESTIMATE FROM SCALE
DEPENDENCE

We can follow a version of the traditional es-
timation of theory errors from the dependence of
the computed NLO cross section on two scales, the
renormalization scale µuv and the factorization scale
µco. Our implementation is as follows. Let us denote

x1 = log2(2µuv/ET ) ,

x2 = log2(2µco/ET ) .
(3)
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We compute the cross section near x1 = x2 = 0 and
fit it to the form[

dσ(x1, x2)
dET

]
NLO

=
[
dσ(0, 0)

dET

]
NLO

×

×

1 +
∑

J

xJAJ +
∑
J,K

xJMJKxK

 . (4)

The vector AJ tells where the cross section has a
saddle point as a function of the scales. The saddle
point is generally a slightly smaller than at µco =
µco = ET /2, that is at slightly negative values of
x1 and x2. We return to this point in the following
section. For the moment, we consider the matrix M .

We use M to provide an estimate of uncalculated
higher order terms, on the ground that the order α2

s

contribution to M from the scale dependence of the
coupling and the parton distributions is canceled by
NNLO contributions to the hard scattering cross sec-
tion. We compute the eigenvalues of M and denote
by λmax the one with the larger absolute value. We
find (see Fig. 1) that |λmax| is about 0.08 at low val-
ues of ET , between 30 GeV and 100 GeV and rises
a bit to about 0.11 at higher values of ET , around
500 GeV. Traditionally, one estimates the theory
error by making an excursion away from the “best”
scale choice of a factor 2 for each of the scales, that
is ±1 for each of x1 and x2. That is, one uses an
excursion of size 2 in x2

1 +x2
2. This suggests that the

“traditional style” error estimate should be 2|λmax|.
That is, the error varies between about 0.16 at lower
values of ET to about 0.22 at higher values of ET .

We can choose functions fi(ET ) that give this,
approximately. We choose

f0(ET ) = 0.16 ,

f1(ET ) = 0.08
[
ln(15 ET /

√
s) + 0.7

]
,

f2(ET ) = 0.04
[
ln(15 ET /

√
s)2 − 1.0

]
.

(5)

With these choices, the net error,

E(ET ) ≡
√∑

fi(ET )2 , (6)

is a slowly rising function of ET that is about 0.2.
See Fig. 2.

Comment on the range of scale choices. We have
estimated the theoretical uncertainty by varying the
µ scales by a factor of two about a central value,
which we have chosen as the saddle point in the de-
pendence of the cross section on the scales. This is
a conventional choice, but is it reasonable? To ex-
amine this question, we can look at cases in which
NNLO calculations exist. Here, we choose one case
as an example. In Fig. 3, we show the NNLO calcu-
lation for Higgs production at the LHC as a function
of a parameter pveto

T [2]. Here, the renormalization
and factorization scales are varied by a factor of two,

Figure 3: The cross section for Higgs production at the
LHC for LO, NLO, and NNLO calculations as taken from
Ref. [2]. The computed cross section vetos jets in the
central region |η| < 2.5 imposes pjet

T > pveto
T .
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Figure 4: Fractional shift of the jet cross section
at the saddle point compared to the nominal choice
{µIR, µCO} = {ET /2, ET /2}. The shift is generally
within a ±3% band (indicated by the shaded region)
except in the low ET range. The curve is the function
f3(ET )− f4(ET ), where f3 and f4 are given in Eq. (7).

{µR, µF } ∈ [Mh/2, 2Mh]. We find that this range
of uncertainty covers the full NNLO range for a low
pveto

T and includes the NNLO central value at large
pveto

T . We conclude that in this case varying the pa-
rameters µ by a factor of 2 in the NLO calculation
provides reasonable estimate of the “1σ” error in the
NLO calculation. Choosing a smaller range would
underestimate the error.

IV. UNCERTAINTY DUE TO CHOICE OF
µ = ET /2

For the calculation of jet cross sections, it is conve-
nient to choose the renormalization scales such that
{µIR, µCO} = {ET /2, ET /2} since this point is gen-
erally near the saddle point of the NLO cross section
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as a function of {µIR, µCO}. We can evaluate the
value of the jet cross section at both {µIR, µCO} =
{ET /2, ET /2} and at the saddle point. The dif-
ference yields an estimate of the theoretical uncer-
tainties that is independent of the uncertainty de-
rived from the quadratic terms,

∑
xJMJKxK , in

Eq. (4). In Fig. 4, we display the fractional shift of
the jet cross section at the saddle point compared
the cross section at {µIR, µCO} = {ET /2, ET /2}.
This shift is approximately a constant 2% to 3% for
ET above 100 Gev. For low ET , the shift appears
to have another contribution that is approximately
10−3/(ET /

√
s). We treat both of these shifts as in-

dependent contributions to the theory error. Thus
we add two error functions fi(ET ),

f3(ET ) = 0.03 .

f4(ET ) =
0.001

ET /
√

s
.

(7)

V. SUMMATION OF THRESHOLD LOGS

For parton-parton scattering near the threshold
for the production of a jet with a given ET , there is
restricted phase space for real gluon emission. Thus,
there is an incomplete cancellation of infrared diver-
gences between real and virtual graphs, resulting in
large logarithms. At n-th order in αn

S(µ) these loga-
rithms enter the cross section in the form αn

S(µ) L2n.
The singular logarithm L is of the form

Ln '

[
lnn−1

(
(ŝ− 4E2

T )/E2
T

)
ŝ− 4E2

T

]
+

where ŝ square of the energy available in the par-
tonic c.m. frame.2 Under the integral the function
with the “+-prescription” is multiplied by a smooth
function F (s) that contains the parton distribution
functions in the initial state hadrons. We can ex-
press this as∫

dŝ

[
ln2n−1

(
(ŝ− 4E2

T )/E2
T

)
ŝ− 4E2

T

]
+

F (ŝ)

=
∫

dŝ ln2n−1
(
ŝ− 4E2

T

) F (ŝ)−F
(
4E2

T

)
ŝ− 4E2

T

∼
∫

dŝ ln2n−1
(
ŝ− 4E2

T

)
F ′ (4E2

T

)
.

Thus, the +-prescription has the effect of taking the
derivative of F (ŝ), denoted F ′(ŝ). These contribu-
tions are potentially large if the parton distribution

2 See Ref. [3] for details.
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Figure 5: The effect of the threshold resummation con-
tributions to jet production at the Tevatron,

√
s =

1800 GeV for two choices of scale, µ = {ET /2, 2ET }.
Figure a) compares with the CDF data, and Figure b)
compares with the D0 data. These figures are from
Ref. [3].

functions contained in F (ŝ) are steeply falling. The
leading logarithms can be summed to all orders in
αS . We make use of the numerical results from
Ref. [3].

Figure 5 displays the size of the threshold correc-
tions for CDF and D0 jet measurements at the Teva-
tron. Pairs of curves are presented for two choices
of scale: µ = ET /2 and µ = 2ET . For µ = 2ET , the
effects of the threshold resummation can be sizable,
10% at high ET and up to 20% at low ET . However,
for a scale choice of µ = ET /2, the threshold sum-
mation effects are uniformly small, approximately
2% throughout the kinematic range.

We use the threshold summation as an inde-
pendent error, associating with it another function
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fi(ET ) that we take to be

f5(ET ) = 0.02 . (8)

VI. UNDERLYING EVENT & HADRONIC
CORRECTIONS: SPLASH-IN AND

SPLASH-OUT

A separate source of uncertainties in jet measure-
ments comes from what is colloquially known as
“splash-in” and “splash-out” corrections. “Splash-in”
corrections arise from the underlying event, which
can deposit additional energy into the jet cone; we
will refer to these more formally as Underlying Event
(UE) corrections. “Splash-out” corrections come
from the hadronization process of the jet which may
move some of the jet energy outside the defined jet
cone. We will refer to these as Hadronization Correc-
tions (HC). In either case, the correction is modeled
as adding an amount δET to the observed transverse
energy (or transverse momentum) of the jet. To es-
timate δET , follow the analysis of Ref. [4].

We can parameterize the effect of the underlying
event corrections on the apparent ET of the jet as

〈δET 〉UE = ΛUE R2 (9)

where R is the cone radius of the jet, and ΛUE is a
parameter we will extract from comparative studies.
Because we model the “splash-in” energy is random
and uncorrelated how the jet develops, we expect
the contribution from the underlying event will scale
as the area of the jet cone–hence the factor of R2.
Ref. [4] finds ΛUE(1.96 TeV) ' 3± 1 GeV.

In contrast to the underlying event correction, we
expect the “splash-out” correction to increase as the
size of the jet cone decreases. Following Ref. [4], we
parameterize the hadronization correction as

〈δEi
T 〉HC = −Ci

2
R
A(µI) (10)

where A(µI) parameterizes the soft gluon radiation.
Ref. [4] takes µI = 2 GeV and finds A(0.2 GeV) '
0.2 GeV. In Eq. (10), Ci is a color factor which
depends on whether the jet is initiated by a quark
or a gluon. For gluons we use CA = 3, and for
quarks we use CF = 4/3. Note the ratio CA/CF =
9/4 ∼ 2 implies that the gluon jets have broader
hadronization radiation than the quark jets.

The results for the underlying event and
hadronization corrections are displayed in Figs. 6
and 7. Fig. 6, taken from Ref. [4], displays the cor-
rections for quark jets at the Tevatron using a seed-
less cone algorithm. Fig. 7 displays the corrections
for both quark and gluon jets at the Tevatron using
the parameterizations of Eqs. (9) and (10). Fig. 6

Figure 6: Modification of the pt of jets due to the un-
derlying event (upper curves) and hadronization (lower
curves), for qq → qq scattering at the Tevatron Run II
(pp̄,

√
s = 1.96 TeV) as computed in Ref. [4]. The indi-

vidual curves compare Pythia 6.412 [5] tune A [dashed
line], and Herwig 6.510 [6] with Jimmy 4.3 [7] [solid line].
The analytical result for the hadronization correction
as represented by Eq. (10) is also displayed [dot-dashed
line]. The figure is from Ref. [4].

corresponds to Fig. 7-a) where we have used our pa-
rameterizations of Eqs. (9) and (10). The underlying
event and hadronization corrections have opposite
sign, and we note that for a jet cone radius of R be-
tween 0.6 and 0.7, the two corrections nearly cancel
each other.

While the underlying event correction is the same
for quark and gluon jets, the hadronization correc-
tion depends on the appropriate color factor, CF or
CA. While we cannot easily distinguish quark or
gluon jets on an event-by-event basis, we can esti-
mate the average fraction of each. Fig. 8 displays the
relative fraction of qq, qg, and gg initiated jets at the
Tevatron as a function of ET for the leading-order
processes. Using this as a guide, we estimate that
the fractions of final-state quark and gluon jets at
the Tevatron in the low ET region is approximately

fq ≈ 2
3

fg ≈ 1
3

.

Using these fractions, we can form a weighted aver-
age of the quark and gluon terms

[δET ]HC = fq[δE
q
T ]HC + fg[δE

g
T ]HC

= − fq
2Cq

R
A(µI)− fg

2Cg

R
A(µI)

' −1 GeV ± 0.5 GeV .

Here, we have used a typical cone radius of R = 0.7
and taken a conservative choice for the uncertainty
of 50% of the correction.

The underlying event corrections are determined
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Figure 7: Calculation of the underlying event and
hadronization corrections for a) quark-initiated and b)
gluon-initiated jets at the Tevatron. The shaded (blue)
band represents the underlying event correction, with
its uncertainty, based on ΛUE = 3 ± 1. The lower solid
(green) line represents the hadronization correction. The
sum of these corrections is represented by the dashed
(red) line.

by ΛUE = 3± 1 GeV; thus,

[δET ]UE ' +1.5 GeV ± 0.5 GeV .

Combining the underlying event and hadronization
corrections, we obtain

δET ' +0.5 GeV ± 0.7 GeV , (11)

where we have added the separate uncertainties in
quadrature.

Using this δET shift, we can determine the effect
on the final jet observables once we know the be-
havior of the jet cross section as a function of ET .
The differential cross section obeys an approximate
power law of the form

dσ(ET )
dET

≈ const

En
T

. (12)

For jets in the intermediate range ET =
[50, 300] GeV, we find n ≈ 7 as illustrated by Fig. 9
and Fig. 10.

The effect of the non-perturbative corrections is
to shift the apparent ET via

ET = Epert
T + δET .

Figure 8: Relative contribution to the inclusive jet cross-
section due to the various partonic subprocesses. From
Ref. [8].
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Figure 9: Jet Cross section vs. ET at the Tevatron. The
line is a power law fit with n = 7; this describes the
slope of the jet data in the intermediate range ET =
[50, 300] GeV.

Let us write the differential cross section as the func-
tion f :

dσ(ET )
dET

≡ f(ET )

Then

f(ET ) ≈ fpert(E
pert
T ) = fpert(ET − δET ) .

We can perform a Taylor expansion about ET for
small δET

f(ET ) = fpert(ET − δET )

' fpert(ET )− δET

df ′pert(ET )
dET

= fpert(ET )
{

1 + n
δET

ET

}
.
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Figure 10: Power law behavior at the Tevatron, n =
−d log(dσ/dET )/d log(ET ) plotted versus ET . A guide-
line is drawn at n = 7.
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Figure 11: A compilation of the uncertainties for jet pro-
duction. The upper thick line (black) is the quadrature
sum of the individual errors.

Here we have used the power law of Eq. (12) to re-
place df ′(ET ) = −n f(ET )/ET . Thus, to first order
we find3

dσ

dET
' dσpert

dET

[
1 + n

〈δET 〉
ET

+ ...

]
(13)

so that the fractional correction is n 〈δET 〉/ET . We
use n ≈ 7. Our estimate in Eq. (11) is that expected
value of δET is about 0.5 GeV with an uncertainty
of 0.7 GeV. We use the uncertainty to estimate an
uncertainty in the cross section arising from under-
lying event and hadronization corrections. Taking
7 × 0.7 GeV ≈ 5 GeV, the uncertainty in the cross
section from this source is

f6(ET ) =
5 GeV

ET
. (14)

3 Cf., Eq.(5.9) of Dasgupta et al. in Ref. [4]

VII. SUMMARY

We now summarize the contributions to the un-
certainty of the jet ET distributions:

f0(ET ) =0.16

f1(ET ) =0.08
[
log(15ET /

√
s) + 0.7

]
f2(ET ) =0.04

[
log(15ET /

√
s)2 − 1.0

]
f3(ET ) =0.03

f4(ET ) =
−0.001
ET /

√
s

f5(ET ) =0.02

f6(ET ) =
5 GeV

ET

. (15)

These represent correlated errors. The net error at
any one value of ET is

E(ET ) ≡
√∑

fi(ET )2 . (16)

We display this in Fig. 11. For ET > 60 GeV, the
purely perturbative errors are dominant. The es-
timated error is about 20%, slowly rising with ET

as the needed partonic momentum fractions rise.
For ET < 60 GeV, the errors associated with non-
perturbative, power suppressed, contributions be-
come more important.
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